Systemic Risk
in a Structural Model of
Bank Default Linkages

Yvonne Kreis and Dietmar Leisen
Structural Model of Default

• Description:
 – Individual bank defaults iff assets < debt
 – Introduce default correlation through asset correlation
 – Study a banking system with N individual banks

• Analogous to default risk in a bank portfolio but there are two crucial differences:
 – Typically use “small” correlation in bank portfolios, but we empirically find large correlations in the banking system
 – Typically assume “large/infinite” number N but actual number is small in the banking system
Micro-prudential Regulation and Banking Sector Default

- Micro-prudential regulation addresses individual default probability $p_i = p$ for $i = 1, \ldots, N$ banks
- To describe banking sector default, define
 - Indicator variable for default of bank i: X_i
 - Default frequency: $M_N = \frac{\sum_{i=1}^{N} X_i}{N}$
- **If** asset correlation=0, Law of Large Numbers implies

 $M_N \rightarrow p$

 - suggests that default frequency is “close to” individual default probability,
- Focus on micro-prudential regulation
Density of Default Frequency M_N
(Correlation $\rho=0$; N=1,000 Banks)

For correlation=0: Here 0.3146%

For correlation=0: $M_N \sim N(p, \sigma_N)$, $\sigma_N = \sqrt{\frac{p(1-p)}{N}}$; Here $\sigma_N = 0.3146\%$

Parameter: ind. def. prob. $p=1\%$
Density of Default Frequency M_N
(Correlation $\rho=63.8\%$; $N=1,000$ Banks)

Parameter: ind. def. prob. $p=1\%$
Systemic Risk Measure

• Summary of observations from previous slides:
 – Actual numbers N are “large” but too small to adequately capture “infinity”
 – In addition, correlations are far from zero, in particular close to 1 (maximum)
• Default frequency “spreads” out to the right.
• Default frequency larger than micro-prudential reference level \(p = E[M_N] \) is problematic
 – Define Conditional Expected default frequency:
 – Systemic risk measure
 – Foundation for macro-prudential regulation
Systemic is Sizeable and Depends Non-linearly on Correlation

Parameter: ind. def. prob. p=1%

- $N=10$
- $N=20$
- $N=1000$

Min ρ 75%
Average ρ 82%
Max ρ 92%
Evolution of Our Systemic Risk Measure
Conclusion

• Approach to systemic risk based on well-known structural model of credit risk

• Asset correlation
 – Strong non-linear impact on systemic risk measure
 – Empirically, increasing over time and typically “large”
 – Strong increases may signal systemic stress

• “Large” correlations mean macro-prudential regulation required